УДК: 528.22

DOI: https://doi.org/10.36887/2415-8453-2023-1-26

Bohdan Lysko,
Candidate of Technical Sciences,
Ivano-Frankivsk National
Technical University of Oil and Gas

This article presents the development of a methodology for determining the deviation of straight lines using high-precision leveling and GNSS measurements, its estimated accuracy, and the justification of technological parameters for constructing geodynamic testing grounds. This problem is essential in the geodetic and geophysical fields since changes in the shape of the equipotential surface may indicate a redistribution of mass in the Earth’s crust and other natural phenomena. Studying this problem using the proposed methodology can provide insight into the main geological processes, gravitational potentials, and neotectonic processes. Monitoring of changes and deformation of the Earth’s surface is of great importance for understanding solid processes on the Earth, especially those caused or intensified by anthropogenic activities, which currently pose global challenges to humanity. The study presents the analysis of the existing methods for determining the change in the shape of the equipotential surface. It substantiates the advantages of using high-precision leveling and GNSS measurements to ensure the accuracy and reliability of the results. The calculation formulas for estimating the accuracy of determining the deviation of straight lines with the possibility of studying the shape of equipotential surfaces with millimeter accuracy are proposed. The methodology and technological parameters have been developed, which can be used to determine the change in the deviation of a straight line on geodynamic polygons with an accuracy of 0.1-0.2″. Also, the possibility of using the research results to determine changes in the shape of equipotential surfaces is theoretically substantiated. Namely, changes in their radii of curvature are associated with the possibility of predicting neotectonic processes according to modern scientific hypotheses.

Keywords: deviation of straight lines; global navigation satellite systems; geometric leveling; orthometric excesses; geoid, geodetic heights.


  1. Bagheri-Gavkosh M.; Hosseini S.M.; Ataie-Ashtiani B.; Sohani Y.; Ebrahimian H.; Morovat F.; Ashrafi S. (2021) Land subsidence: A global challenge. Science of the Total Environment. 778, 146193. PMID: 33725610.
  2. Herrera-García G.; Ezquerro P.; Tomas R.; Béjar-Pizarro M.; López-Vinielles J.; Rossi M.; Mateos R.M.; Carreón-Freyre D.; Lambert J.; Teatini P.; et al. (2021). Mapping the global threat of land subsidence. 371, 34–36.
  3. Massonnet D.; Feigl K.L. (1998). Radar interferometry and its application to changes in the earth’s surface. Revie of Geophys. 36, 441–500.
  4. Gabriel A.K.; Goldstein R.M.; Zebker H.A. (1989). Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research. 94, 9183–9191.
  5. Sentinel-1 – Missions – Sentinel Online – Sentinel Online. Sentinel Online. URL: https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1
  6. Raspini F.; Bianchini S.; Ciampalini A.; Del Soldato M.; Solari L.; Novali F.; Del Conte S.; Rucci A.; Ferretti A.; Casagli N. (2018). Continuous, semi-automatic monitoring of ground deformation using Sentinel-1 satellites. Scientific Reports. 8, 1–11.
  7. Kalia A.C.; Frei M.; Lege T. A. (2017). Copernicus downstream-service for the nationwide monitoring of surface displacements in Germany. Remote Sensing Environment. 202, 234–249.
  8. Burak K. O., Yarosh K. (2021). On prospects of astronomo-geodesic leveling for coordinate support of geodynamic and technogenic polygons. Geodesy, Cartography, and Aerial Photography. 93, 85–93. URL: https://doi.org/10.23939/istcgcap2021.93.085
  9. Burak K. (2022). On the accuracy of gravimetric provision of astronomo-geometric leveling on geodynamic and technogenic polygons. Geodesy, Cartography, and Aerial Photography. 95, 39–52. URL: https://doi.org/10.23939/istcgcap2022.95.039
  10. Dvulit P. D., Holubinka Yu. I. (2005). Determination of elevation deviations based on ground gravimetric data and satellite measurements. Visnyk heodezii ta kartohrafii. 2, 12–21.
  11. Dvulit P. D., Holubinka Yu. I. (2008). On the determination of gravimetric components of straight line deviations». Visnyk heodezii ta kartohrafi. 2, 7–9.
  12. Dvulit P. D.; Dvulit Z. P.; Sidorov I. S. (2019). Determination of plumb lines with using trigonometric levelling and GNSS measurements. Geodesy, Cartography, and Aerial Photography. 89, 12–19. URL: https://doi.org/10.23939/istcgcap2019.01.012
  13. Ceylan A. (2009). Determination of the deflection of vertical components via GPS and leveling measurement: A case study of a GPS test network in Konya, Scientific Research and Essay. 4 (12), 1438-1444. URL: http://www.academi cjour nals. org/SRE. – ISSN 1992- 2248
  14. Cigna F.; Esquivel Ramírez R.; Tapete D. (2021). Accuracy of Sentinel-1 PSI and SBAS InSAR Displacement Velocities against GNSS and Geodetic Leveling Monitoring Data. Remote Sensing. 13, 4800–4812. URL: https://doi.org/10.3390/rs13234800
  15. Hirt C.; Schmitz M.; et al. (2010). Mutual validation of GNSS height measurements and high-precision geometric-astronomical leveling. GPS Solutions. 15 (2), 149–159. URL: https://doi.org/10.1007/s10291-010-0179-3
  16. Beutler G.; Brockmann E. (1994). Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): Theory and initial results. Manuscripta geodaetica. 19, 367–386.
  17. Wübbena G.; Schmitz M.; Menge F.; Boder V.; Seeber G. (2000). Automated Absolute Field Calibration of GPS Antennas in Real-Time. Proceedings of the 13th International Technical Meeting of the Satellite Division of the Institute of Navigation ION GPS 2000. 2512 – 2522.
  18. Rothacher M. (2001). Comparison of Absolute and Relative Antenna Phase Center Variations. GPS Solutions. 4, 55–60.
  19. Schmid R.; Steigenberger P.; Gendt G.; Ge M.; Rothacher M. (2007). Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. Journal of Geodesy. 81, 781–798.
  20. Saastamoinen J. (1997). Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites. The Use of Artificial Satellites for Geodesy. 15, 247–251.
  21. Boehm J.; Werl B.; Schuh H. (2006). Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. Journal of Geophysical Research Solid Earth. 111, 1–9.

The article was received 09.01.2023